首页> 外文OA文献 >Solving large interval availability models using a model transformation approach
【2h】

Solving large interval availability models using a model transformation approach

机译:使用模型转换方法求解大间隔可用性模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fault-tolerant systems are often modeled using (homogeneous) continuous time Markovchains (CTMCs).\udComputation of the distribution of the interval availability, i.e. of the distribution of the fraction of time in\uda time interval in which the system is operational, of a fault-tolerant system modeled by a CTMC is an important problem which has received attention recently. However, currently available methods to perform that computation are very expensive for large models and large time intervals. In this paper, we develop a new method to compute the distribution of the interval availability which, for large enough models and large enough time intervals, is significantly faster than previous methods. In the method, a truncated transformed model,\udwhich has with some arbitrarily small error the same interval availability distribution as the original model, is obtained from the original model and the truncated transformed model is solved using a previous state-of-the-art method. The method requires the selection of a “regenerative” state and its performance depends on that selection. For a class of models, including typical failure/repair models of coherent fault-tolerant systems with exponential failure and repair time distributions and repair in every state with failed components, a natural\udselection for the regenerative state exists and theoretical results are available assessing the performance of the method for that natural selection in terms of “visible” model characteristics. Those results can be used to anticipate when the method can be expected to be competitive for models in that class. Numerical results are presented showing that the new method can indeed be significantly faster than a previous state-of-the-art method and is able to deal with some large models and large time intervals in reasonable CPU times.
机译:容错系统通常使用(均质)连续时间马尔可夫链(CTMC)进行建模。由CTMC建模的容错系统是一个重要的问题,近来受到关注。但是,对于大型模型和较大的时间间隔,执行该计算的当前可用方法非常昂贵。在本文中,我们开发了一种新的方法来计算间隔可用性的分布,对于足够大的模型和足够大的时间间隔,此方法比以前的方法要快得多。在该方法中,从原始模型中获得了截断的变换模型,该截断的变换模型具有与原始模型相同的间隔可用性分布,并且具有任意小的误差,并且该截断的变换模型使用先前的现有技术进行了求解。方法。该方法需要选择“再生”状态,其性能取决于该选择。对于一类模型,包括具有指数性故障的连贯容错系统的典型故障/修复模型和维修时间分布,以及在具有故障组件的每个状态下进行维修,都存在对再生状态的自然\非选择,并且可以得到理论结果来评估就“可见”模型特征而言,自然选择方法的性能。这些结果可用于预测何时该方法可以预期与该类别的模型竞争。数值结果表明,新方法的确可以比以前的最新方法快得多,并且能够在合理的CPU时间内处理某些大型模型和较大的时间间隔。

著录项

  • 作者

    Carrasco, Juan A.;

  • 作者单位
  • 年度 2025
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号